1 Propositional Logic Language

For each of the following sentences, use the notation introduced in class to convert the sentence into propositional logic. Then write the statement's negation in propositional logic.

- (a) The cube of a negative integer is negative.
- (b) There are no integer solutions to the equation $x^2 y^2 = 10$.
- (c) There is one and only one real solution to the equation $x^3 + x + 1 = 0$.
- (d) For any two distinct real numbers, we can find a rational number in between them.

2 Implication

Which of the following implications are always true, regardless of P? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

- (a) $\forall x \forall y P(x, y) \implies \forall y \forall x P(x, y)$.
- (b) $\exists x \exists y P(x,y) \implies \exists y \exists x P(x,y)$.
- (c) $\forall x \exists y P(x, y) \implies \exists y \forall x P(x, y)$.
- (d) $\exists x \forall y P(x, y) \implies \forall y \exists x P(x, y)$.

3 Logic

Decide whether each of the following is true or false and justify your answer:

(a)
$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

(b)
$$\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$$

(c)
$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

(d)
$$\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$$