CS 70Discrete Mathematics and Probability TheoryFall 2018Alistair Sinclair and Yun SongDIS 2A

1 Stable Marriage

Consider the set of men $M = \{1, 2, 3\}$ and the set of women $W = \{A, B, C\}$ with the following preferences.

Men		W	om	en	
1	A	>	В	>	С
2	B	>	А	>	С
3	A	>	В	>	С

Women	Men				
А	2	>	1	>	3
В	1	>	2	>	3
С	1	>	2	>	3

Run the traditional propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work.)

2 Universal Preference

Suppose that preferences in a stable marriage instance are universal: all *n* men share the preferences $W_1 > W_2 > \cdots > W_n$ and all women share the preferences $M_1 > M_2 > \cdots > M_n$.

- (a) What pairing do we get from running the algorithm with men proposing? Can you prove this happens for all *n*?
- (b) What pairing do we get from running the algorithm with women proposing?
- (c) What does this tell us about the number of stable pairings?

3 Propose-and-Reject Proofs

Prove the following statements about the traditional propose-and-reject algorithm.

(a) In any execution of the algorithm, if a woman receives a proposal on day *i*, then she receives some proposal on every day thereafter until termination.

(b) In any execution of the algorithm, if a woman receives no proposal on day *i*, then she receives no proposal on any previous day j, $1 \le j < i$.

(c) In any execution of the algorithm, there is at least one woman who only receives a single proposal. (Hint: use the parts above!)