CS 70Discrete Mathematics and Probability TheoryFall 2018Alistair Sinclair and Yun SongDIS 3A

1 Touring Hypercube

In the lecture, you have seen that if G is a hypercube of dimension n, then

- The vertices of *G* are the binary strings of length *n*.
- *u* and *v* are connected by an edge if they differ in exactly one bit location.

A *Hamiltonian tour* of a graph is a sequence of vertices v_0, v_1, \ldots, v_k such that:

- Each vertex appears exactly once in the sequence.
- Each pair of consecutive vertices is connected by an edge.
- v_0 and v_k are connected by an edge.
- (a) Show that a hypercube has an Eulerian tour if and only if n is even.

(b) Show that every hypercube has a Hamiltonian tour.

2 Trees

Recall that a *tree* is a connected acyclic graph (graph without cycles). In the note, we presented a few other definitions of a tree, and in this problem, we will prove two fundamental properties of a tree, and derive two definitions of a tree we learned from the note based on these properties. Let's start with the properties:

(a) Prove that any pair of vertices in a tree are connected by exactly one (simple) path.

(b) Prove that adding any edge (not already in the graph) between two vertices of a tree creates a simple cycle.

Now you will show that if a graph satisfies this property then it must be a tree:

(c) Prove that if the graph has no simple cycles and has the property that the addition of any single edge (not already in the graph) will create a simple cycle, then the graph is a tree.

3 Planarity

Consider graphs with the property *T*: For every three distinct vertices v_1, v_2, v_3 of graph *G*, there are at least two edges among them. Prove that if *G* is a graph on ≥ 7 vertices, and *G* has property *T*, then *G* is nonplanar.