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Error Correcting Codes
In this note, we will discuss the problem of transmitting messages across an unreliable communication
channel. The channel may cause some parts of the message (“packets”) to be lost, or dropped; or, more
seriously, it may cause some packets to be corrupted. We will learn how to “encode” the message by
introducing redundancy into it in order to protect against both of these types of errors. Such an encoding
scheme is known as an “error correcting code.” Error correcting codes are a major object of study in
mathematics, computer science and electrical engineering; they belong to a field known as “Information
Theory.” In addition to the beautiful theory underlying them (which we will glimpse in this note), they are
of great practical importance: every time you use your cellphone, satellite TV, DSP, cable modem, disk
drive, CD-ROM, DVD player etc., or send and receive data over the internet, you are using error correcting
codes to ensure that information is transmitted reliably.

There are, very roughly speaking, (at least) two distinct flavors of error correcting codes: algebraic codes,
which are based on polynomials over finite fields, and combinatorial codes, which are based on graph theory.
In this note we will focus on algebraic codes, and in particular on so-called Reed-Solomon codes (named
after two of their inventors). In doing so, we will be making essential use of the properties we learned about
polynomials in the last lecture.

Erasure Errors
We will consider two situations in which we wish to transmit information on an unreliable channel. The
first is exemplified by the Internet, where the information (say a file) is broken up into packets, and the
unreliability is manifest in the fact that some of the packets are lost during transmission, as shown below:
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We refer to such errors as erasure errors. Suppose that the message consists of n packets and suppose that
at most k packets are lost during transmission. We will show how to encode the initial message consisting
of n packets into a redundant encoding consisting of n+k packets such that the recipient can reconstruct the
message from any n received packets. Note that in this setting the packets are labeled with headers, and thus
the recipient knows exactly which packets were dropped during transmission.

We can assume without loss of generality that the content of each packet is a number modulo q, where q is
a prime. For example, the content of the packet might be a 32-bit string and can therefore be regarded as a
number between 0 and 232 − 1; then we could choose q to be any prime larger than 232. The properties of
polynomials over GF(q) (i.e., with coefficients and values reduced modulo q) are perfectly suited to solve
this problem and are the backbone of this error-correcting scheme.

To see this, let us denote the message to be sent by m1, . . . ,mn, where each mi is a number in GF(q), and
make the following crucial observations:
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1. There is a unique polynomial P(x) of degree n−1 such that P(i) = mi for 1 ≤ i ≤ n (i.e., P(x) contains
all of the information about the message, and evaluating P(i) gives the intended contents of the i-th packet).

2. The message to be sent is now m1 = P(1), . . . ,mn = P(n). We can generate additional packets by evalu-
ating P(x) at points n + j. (Recall that our transmitted message should be redundant, i.e., it should contain
more packets than the original message to account for the lost packets.) Thus the transmitted message is
c1 = P(1),c2 = P(2), . . . ,cn+k = P(n+k). Since we are working modulo q, we must make sure that n+k≤ q,
but this condition does not impose a serious constraint since q is assumed to be very large.

3. We can uniquely reconstruct P(x) from its values at any n distinct points, since it has degree n−1. This
means that P(x) can be reconstructed from any n of the transmitted packets (not just the original n packets).
Once we have reconstructed the polynomial P, we can evaluate P(x) at x = 1, . . . ,n to recover the original
message m1, . . . ,mn.

Example

Suppose Alice wants to send Bob a message of n = 4 packets and she wants to guard against k = 2 lost
packets. Then, assuming the packets can be coded up as integers between 0 and 6, Alice can work over
GF(7) (since 7≥ n+k = 6; of course, in real applications, we would be working over a much larger field!).
Suppose the message that Alice wants to send to Bob is m1 = 3, m2 = 1, m3 = 5, and m4 = 0. The unique
polynomial of degree n−1 = 3 described by these 4 points is P(x) = x3 +4x2 +5.

Exercise. We derived this polynomial using Lagrange interpolation mod 7. Check this derivation, and verify
also that indeed P(i) = mi for 1 ≤ i ≤ 4.

Since k = 2, Alice must evaluate P(x) at 2 extra points: P(5) = 6 and P(6) = 1. Now, Alice can transmit the
encoded message which consists of n + k = 6 packets, where c j = P( j) for 1 ≤ j ≤ 6. So Alice will send
c1 = P(1) = 3, c2 = P(2) = 1, c3 = P(3) = 5, c4 = P(4) = 0, c5 = P(5) = 6, and c6 = P(6) = 1.

Now suppose packets 2 and 6 are dropped, in which case we have the following situation:
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From the values that Bob received (3, 5, 0, and 6), he uses Lagrange interpolation and computes the follow-
ing basis polynomials (where everything should be interpreted mod 7):

∆1(x) =
(x−3)(x−4)(x−5)

−24
≡ 2(x−3)(x−4)(x−5) (mod 7)

∆3(x) =
(x−1)(x−4)(x−5)

4
≡ 2(x−1)(x−4)(x−5) (mod 7)

∆4(x) =
(x−1)(x−3)(x−5)

−3
≡ 2(x−1)(x−3)(x−5) (mod 7)

∆5(x) =
(x−1)(x−3)(x−4)

8
≡ (x−1)(x−3)(x−4) (mod 7).

(Note that we have used the fact here that the inverses of −24, 4, −3 and 8 (mod 7) are 2, 2, 2 and 1
respectively.) He then reconstructs the polynomial P(x) = 3 · ∆1(x) + 5 · ∆3(x) + 0 · ∆4(x) + 6 · ∆5(x) =
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x3 +4x2 +5 (mod 7). Bob then evaluates m2 = P(2) = 1, which is the packet that was lost from the original
message. More generally, no matter which two packets were dropped, following exactly the same method
Bob can always reconstruct P(x) and thus the original message.

Exercise. Check Bob’s calculation above, and verify that he really does reconstruct the correct polynomial,
as claimed. Remember that all arithmetic must be done mod 7.

Let us consider what would happen if Alice sent one fewer packet. If Alice only sent c j for 1≤ j ≤ n+k−1,
then with k erasures, Bob would only receive c j for n− 1 distinct values j. Thus, Bob would not be able
to reconstruct P(x) (since there are q polynomials of degree at most n−1 that agree with the n−1 packets
which Bob received)! This error-correcting scheme is therefore optimal: it can recover the n characters of
the transmitted message from any n received characters, but recovery from any smaller number of characters
is impossible.

Polynomial Interpolation Revisited
Let us take a brief digression to discuss another method of polynomial interpolation (different from Lagrange
interpolation discussed in the previous note) which will be useful in handling general errors. Again, the goal
of the algorithm will be to take as input d + 1 pairs (x1,y1), · · · ,(xd+1,yd+1), and output the polynomial
p(x) = adxd + · · ·+a1x+a0 such that p(xi) = yi for i = 1 to d +1.

The first step of the algorithm is to write a system of d+1 linear equations in d+1 variables: the variables are
the coefficients of the polynomial, a0, . . . ,ad . Each equation is obtained by fixing x to be one of d +1 values:
x1, · · · ,xd+1. Note that in p(x), x is a variable and a0, . . . ,ad are fixed constants. In the equations below, these
roles are swapped: xi is a fixed constant and a0, . . . ,ad are variables. For example, the i-th equation is the
result of fixing x to be xi, and saying that the value of the polynomial is yi: adxd

i +ad−1xd−1
i + . . .+a0 = yi.

Now solving these equations gives the coefficients of the polynomial p(x). For example, suppose we are
given the three pairs (−1,2), (0,1), and (2,5); our goal is to construct the degree-2 polynomial p(x) which
goes through these points. The first equation says a2(−1)2 + a1(−1)+ a0 = 2. Simplifying, we get a2 −
a1 +a0 = 2. Similarly, the second equation says a2(0)2 +a1(0)+a0 = 1, or a0 = 1. And the third equation
says a2(2)2 +a1(2)+a0 = 5 So we get the following system of equations:

a2−a1 +a0 = 2

a0 = 1

4a2 +2a1 +a0 = 5

Substituting for a0 and multiplying the first equation by 2 we get:

2a2−2a1 = 2

4a2 +2a1 = 4

Then, adding the two equations we find that 6a2 = 6, so a2 = 1, and plugging back in we find that a1 = 0.
Thus, we have determined the polynomial p(x) = x2 + 1. To justify this method more carefully, we must
show that the equations always have a solution and that it is unique. This involves showing that a certain
determinant is non-zero, which we will leave as an (optional) exercise; for now we will assume that there is
always a unique solution.
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General Errors
Let us now return to our main topic of error correction, and consider a much more challenging scenario.
Suppose that Alice wishes to communicate with Bob over a noisy channel (say, via a modem). Her mes-
sage is m1, . . . ,mn, where we may think of the mi’s as characters (either bytes or characters in the English
alphabet). The problem now is that some of the characters are corrupted during transmission due to channel
noise. Thus Bob receives exactly as many characters as Alice transmits, but k of them are corrupted, and
Bob has no idea which k these are! Recovering from such general errors is much more challenging than
recovering from erasure errors, though once again polynomials hold the key. As we shall see, Alice can still
guard against k general errors, at the expense of transmitting only 2k additional characters (twice as many
as in the erasure case we saw above).

We will again think of each character as a number modulo q for some prime q. (For the English alphabet,
q is some prime larger than 26, say q = 29.) As before, we can describe the message by a polynomial P(x)
of degree n−1 over GF(q), such that P(1) = m1, . . . , P(n) = mn. As before, to cope with the errors Alice
will transmit additional characters obtained by evaluating P(x) at additional points. As mentioned above,
in order to guard against k general errors, Alice must transmit 2k additional characters: thus the encoded
message is c1, . . . ,cn+2k where c j = P( j) for 1 ≤ j ≤ n+2k, and n+ k of these characters that Bob receives
are uncorrupted. As before, we must put the mild constraint on q that it be large enough so that q ≥ n+2k.

For example, if Alice wishes to send n = 4 characters to Bob via a modem in which k = 1 of the characters
is corrupted, she must redundantly send an encoded message consisting of 6 characters. Suppose she wants
to transmit the same message (3051) as in our erasure example above, and that c1 is corrupted from 3 to 2.
This scenario can be visualized in the following figure:
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From Bob’s viewpoint, the problem of reconstructing Alice’s message is the same as reconstructing the
polynomial P(x) from the n + 2k received characters r1,r2, . . . ,rn+2k. In other words, Bob is given n + 2k
values, r1,r2, . . . ,rn+2k modulo q, with the promise that there is a polynomial P(x) of degree n− 1 over
GF(q) such that P(i) = ri for n+k distinct values of i between 1 and n+2k. Bob must reconstruct P(x) from
this data (in the above example, n+k = 5, and r2 = P(2) = 1, r3 = P(3) = 5, r4 = P(4) = 0, r5 = P(5) = 6,
and r6 = P(6) = 1). Note, however, that Bob does not know which of the n+ k values are correct!

Does Bob even have sufficient information to reconstruct P(x)? Our first observation shows that the answer
is yes: for any given subset of n+k values of i between 1 and n+2k, there is a unique polynomial P(x) such
that P(i) = ri at these values of i. To see this, suppose that P′(x) is any polynomial of degree n−1 that goes
through these n+k points. Then among these n+k points there are at most k errors, and therefore on at least
n of the points we must have P′(i) = P(i). But, as we saw in the previous note (Property 2), a polynomial
of degree n−1 is uniquely defined by its values at n points, and therefore P′(x) and P(x) must be the same
polynomial.

But how can Bob efficiently find such a polynomial? The issue at hand is the locations of the k errors. Let
e1, . . . ,ek be the k locations at which errors occurred (so that P(i) = ri for all i /∈ {e1, . . . ,ek}).

Now Bob could try to guess where the k errors lie, but this would take too long (it would take exponential
time, in fact). Instead, Bob will employ a clever trick based on the following definition. Consider the

CS 70, Fall 2018, Note 9 4



so-called error-locator polynomial

E(x) = (x− e1)(x− e2) · · ·(x− ek).

Note that E(x) is a polynomial of degree k (since x appears k times). Note also that Bob does not know
this polynomial explicitly, because he does not know the positions ei of the errors. However, he will use the
polynomial symbolically, and will eventually compute the values ei that appear in it!

Let us make a simple but crucial observation about this polynomial:

P(i)E(i) = riE(i) for 1 ≤ i ≤ n+2k. (1)

To see this, note that it holds at points i at which no error occurred since at those points P(i) = ri; and it is
trivially true at points i at which an error occurred since then E(i) = 0. This observation forms the basis of a
very clever algorithm invented by Berlekamp and Welch. Looking more closely at the equalities in (1), we
will show that they in fact correspond to n+2k linear equations in n+2k unknowns, from which the locations
of the errors and coefficients of P(x) can be easily deduced (in analogous fashion to the interpolation scheme
we saw in the previous section).

Now define Q(x) := P(x)E(x), which is a polynomial of degree n+k−1, and is therefore described by n+k
coefficients a0,a1, . . . ,an+k−1. The error-locator polynomial E(x) = (x− e1) · · ·(x− ek) has degree k and is
described by k +1 coefficients b0,b1, . . . ,bk but the leading coefficient (the coefficient bk of xk) is always 1.
So we can write:

Q(x) = an+k−1xn+k−1 + · · ·+a1x+a0

E(x) = xk +bk−1xk−1 + · · ·+b1x+b0

Once we fix a value i for x, the received value ri is fixed. Also, Q(i) is now a linear function of the n + k
coefficients an+k−1 . . .a0, and E(i) is a linear function of the k coefficients bk−1 . . .b0. Therefore the equation
Q(i) = riE(i) (which just comes from rewriting (1) using Q(x) = P(x)E(x)) is a linear equation in the n+2k
unknowns an+k−1, . . . ,a0 and bk−1, . . . ,b0. We thus have n+2k linear equations, one for each value of i, and
n+2k unknowns. We can solve these equations and get E(x) and Q(x). We can then compute the ratio Q(x)

E(x)
to obtain P(x). This is best illustrated by an example.

Example. Suppose we are working over GF(7) and Alice wants to send Bob the n = 3 characters “3,” “0,”
and “6” over a modem. Turning to the analogy of the English alphabet, this is equivalent to using only the
first 7 letters of the alphabet, where a = 0, . . . ,g = 6. So the message which Alice wishes for Bob to receive
is “dag”. Then Alice interpolates (e.g., using Lagrange: exercise!) to find the polynomial

P(x) = x2 + x+1,

which is the unique polynomial of degree 2 such that P(1) = 3, P(2) = 0, and P(3) = 6.

Suppose Alice knows that k = 1 character will be corrupted; then she needs to transmit the n + 2k = 5
characters P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, and P(5) = 3 to Bob. Suppose P(1) is corrupted, and
Bob receives the character 2 instead of 3 (i.e., Alice sends the encoded message “dagad” but Bob instead
receives “cagad”). Summarizing, we have the following situation:
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Let E(x) = (x−e1) = x+b0 be the error-locator polynomial—remember, Bob doesn’t know what e1 =−b0
is yet since he doesn’t know where the error occurred—and let Q(x) = a3x3 +a2x2 +a1x+a0 (where again
the coefficients ai are unknown). Now Bob just substitutes i = 1, i = 2, . . . , i = 5 into the equations Q(i) =
riE(i) from (1) above and simplifies to get five linear equations in five unknowns (recall that we are working
modulo 7 and that ri is the value Bob received for the i-th character):

a3 +a2 +a1 +a0 +5b0 = 2

a3 +4a2 +2a1 +a0 = 0

6a3 +2a2 +3a1 +a0 +b0 = 4

a3 +2a2 +4a1 +a0 = 0

6a3 +4a2 +5a1 +a0 +4b0 = 1

Bob then solves this linear system and finds that a3 = 1, a2 = 0, a1 = 0, a0 = 6 and b0 = 6 (all mod 7). (As a
check, this implies that E(x) = x+6 = x−1, so the location of the error is position e1 = 1, which is correct
since the first character was corrupted from a “d” to a “c”.) This gives him the polynomials Q(x) = x3 + 6
and E(x) = x− 1. He can then find P(x) by computing the quotient P(x) = Q(x)

E(x) = x3+6
x−1 = x2 + x + 1. Bob

notices that the first character was corrupted (since e1 = 1), so now that he has P(x), he just computes
P(1) = 3 = “d” and obtains the original, uncorrupted message “dag”.

Exercise. Verify the derivation of the above system of equations from the equalities Q(i) = riE(i) for i =
1,2,3,4,5. Also, solve the equations and check that your solution agrees with the one above. Remember
that all the arithmetic should be done mod 7.

Exercise. Redo the example above for the case where the second character is corrupted from a “0” to a “5”,
and all other characters are uncorrupted.

Finer Points

Two points need further discussion. How do we know that the n+2k equations are consistent? What if they
have no solution? This is simple. The equations must be consistent since Q(x) = P(x)E(x) together with the
error locator polynomial E(x) gives a solution.

A more interesting question is this: how do we know that the n+2k equations are independent, i.e., how do
we know that there aren’t other spurious solutions in addition to the real solution that we are looking for?
Put more mathematically, suppose that the solution we construct is Q′(x),E ′(x); how do we know that this
solution satisfies the property that E ′(x) divides Q′(x) and that Q′(x)

E ′(x) = Q(x)
E(x) = P(x)?

To see that this is true, we note first that, based on our method for calculating Q′(x),E ′(x), we know that
Q′(i) = riE ′(i) for 1 ≤ i ≤ n + 2k; and of course we also have, by definition, Q(i) = riE(i) for the same
values of i. Multiplying the first of these equations by E(i) and the second by E ′(i), we get

Q′(i)E(i) = Q(i)E ′(i) for 1 ≤ i ≤ n+2k, (2)
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since both sides are equal to riE(i)E ′(i). Equation (2) tells us that the two polynomials Q(x)E ′(x) and
Q′(x)E(x) are equal at n + 2k points. But these two polynomials both have degree n + 2k− 1, so they are
completely determined by their values at n + 2k points. Therefore, since they agree at n + 2k points, they
must be the same polynomial, i.e., Q(x)E ′(x) = Q′(x)E(x) for all x.1 Now we may divide through by the
polynomial E(x)E ′(x) (which by construction is not the zero polynomial) to obtain Q′(x)

E ′(x) = Q(x)
E(x) = P(x),

which is what we wanted. Hence we can be sure that any solution we find is correct.

Exercise. Is the solution Q′(x),E ′(x) always unique? The above analysis tells us that the ratio must always
satisfy Q′(x)

E ′(x) = Q(x)
E(x) = P(x), but does not guarantee that Q′(x) = Q(x) and E ′(x) = E(x). Hint: What happens

in our example above when in fact none of the characters is corrupted (although Alice still assumes that
k = 1 character may be corrupted)? Try writing out and solving the equations in this case.

1Note that this is a much stronger statement than equation (2). Equation (2) says that the values of the polynomials agree at
certain points i; this statement says that the two polynomials are equal everywhere, i.e., they are the same polynomial.
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