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1 Introduction

The purpose of this article is to help in logic/proof relationship beyond what
was given in the guerilla section. Because I did not help out with writing
logic problems for the guerilla the problems were a repeat of last semester’s,
and although it was useful to get working on writing logic tables, not enough
indication of logic’s power and ability to help think about how rigorous proofs
are constructed, and whether a proof is logically sound or not.

I hope that this note at least gives some examples of how logic can be used
to solve problems, as well as inspire new topics (that CS70 will face in coming
weeks!)

2 Logical Transformation of Proofs

Let’s see how we can use the same logical deduction rules covered briefly in the
first part of this course to transform proofs into a logically equivalent statement
that is easier to prove. In many cases, this transformation is the key insight that
allows us to get a proof and then apply lemmas, if such lemmas exist, which
are essentially subproofs that may be easier to abstract that the more complex
ones.

Let’s take a look at some examples that have been covered so far:

1. Consider many stable marriage problems, in which we transform the proof
of optimal pairings, or equivalent pairings, into that of the well-ordering
principle, when we can logically deduce that some ordered list of actions
will occur (e.g. if someone first deviates from the original pairing, or some
first non-stable pairing occurs).

2. Graph induction is essentially a transformation of the set of vertices (or
whatever variable n that is being inducted upon) into the given set of
natural numbers, onto which we can apply the induction paradigm on.
The only difference here is that to avoid edge cases in several types of
inductive steps, we have to add, delete, and re-add the node to avoid
build-up error. We are able to achieve this logical deduction by noticing
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that vertices are a discrete (countable) set, and that we can assign an
enumeration ∀v ∈ V for a vertex v in the set of vertices V . There will be
more discussion on countability in the future.

3. Map colorings: A specific application of graph theory is towards that of
maps. With the proper mathematical definition of a map, we can say that
each item on the map can represent a node. In any n-color map theory,
we are concerned only with the colors of the neighbors of each map item.
Therefore, we are logically able to reduce the map to an abstraction such
as a planar graph. If we check the logical requirements of the n-color
map problem, we are able to see logical step by logical step, that indeed a
planar graph is a valid abstraction, and we are able to apply any developed
planar graph theorems to the new problem. Essentially we create a n-color
planar graph theory. (Of course such proofs as the 4-color map theorem
do not get trivial even after this connection, but it is a useful connection
nonetheless as we can now harness the power of graph theory).

4. Goldbach’s Conjecture: Note that logically speaking, a conjecture is a
statement that seems to be true based on all experimental tests and thus
can’t be proven false either, but has never been proven true. It is basically
a guess that the statement is true based on experimental evidence.

Let P be the set of all primes. Then,

∀n ∈ N n > 1 =⇒ ∃p, q ∈ P 2n = p + q

Essentially, every even positive number greater than 2 is the sum of two
prime natural numbers. Not that this is a solution to the problem, as this
problem has been one of the notorious unsolved problems in math, but we
can see that this becomes a sort of reflection of a sum. That is,

∀n ∈ N n > 1 ∃p < 2n ∈ P 2n− p ∈ P

Basically, we are saying that pairs of primes exist that sum to an even
number, for all the even numbers greater than two. This allows us to
think in pairs existing, a sort of symmetry, rather than just enumerating
random sums and trying to come up with primes. Note that although this
transformation is useless for now, the power of thinking of a statement
flexibly in terms of logically equivalent statements is fascinating and a
powerful skill maybe useful for other proofs.

Hopefully, as will be demonstrated in lecture soon, we can also see that
Fermat’s Little Theorem, which states

ap−1 ≡ 1(mod p)

where 1 ≤ a ≤ p − 1 and p ∈ P , can be proven if we make a self-bijection
of GF (p) and we equate their complete products. The bijection and full proof
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will be made clear in the coming lessons. This is yet another example of proof
transformation.

Of course, math is filled with intricate connections and amazing ”coinci-
dences” that turn out not be coincidences at all. The high amount of varying
perspectives we can think about problems give what many believe to be the
beauty of math and also the amazing amount of recollection that allow one
mathematician to grasp another subfield of math. This is because at the bot-
tom of it all, math is logic worked on different systems, and possibly worked on
systems to transform into other systems as just presented.

3 Axiomatic systems and Formal Proofs

If one can think of transforming a proof into a easier, more fundamental, proof
as a sort of ”backwards” proof, then preceding from axioms of a system to a
proof with inference rules is a sort of ”forward” perspective. It may be more
intuitive to proceed backwards from a proof and arrive to a tautology (always
true logical expression) or axiom, but sometimes it is very confusing if not all
inferences are bi-directional implications, and we wind up proving a converse or
something like that instead. (Disclaimer: everything I’m about to say is going
to be talking about a first-order logical system only)

The purpose of writing this section is to hopefully make clear the expectation
of this course and graders instead of making it seem ”pointlessly” rigorous. The
best way to make sure your proof is correct is to start from known assertions
- philosophically there must be some base assertion, and we call these axioms.
Not all proofs have to be axiomatic, and rarely are because that would just
be extremely tedious. However, it is important to start with the base given
assertions; if we haven’t derived anything else, we can ONLY use these assump-
tions. Then, write out in the same mathematical notation the goal, and try to
use forward reasoning from the base assertions to the final goal. This allows
you to at least thinking forwardly towards the proof, and make the path to the
proof clearer. For example, many people get confused with what exactly is a
bijection, and our minds can fools us sometimes when we think something is
bijective (especially for infinite sets as we’ll see in countability!). It might help
to just write everything out in formal notation:

f : X 7→ Y.Injective(f) : ∀m,n ∈ X f(m) = f(n) =⇒ m = n

Surjective(f) : ∀y ∈ Y ∃x ∈ X f(x) = y

Then, seeing if both injectivity and surjectivity satisfy for any given function
rigorously should make a more exacting approach. Some students that have
asked me about this found this approach helpful.

That being said, everything starts from axioms and essentially these are
the fundamental assumptions of any system. Note that different systems can
have contradictory axioms - many do. For example, in GF (2) we have defined
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everything to be modular, such that 1 + 1 = 0. This obviously contradicts with
what we can observe in Z, for instance.

Any system, thus, creates its own theory and its own logically derived ax-
ioms. This is actually a little bit into what deterministic Turing machines try
to do with any axiomatic systems. Any system of axioms has three properties
that may or may not be true:

1. Independent, or minimal. This is essentially a set of axioms that can’t
prove each other - any less assertions and there is no way that the same
things would be true, and any more and we get redundant assertions.
Technically it does not matter if a system is not independent, but since
people like to see what is the least number of vague assumptions (since
less assumption usually suggests a more provable system) this is desired.

2. Consistent. The axioms don’t contradict each other and it’s not possible
to derive both a statement and its contradiction from the system.

3. Complete. For all statements related to this certain theory or system, it
is possible to derive it or prove it to be false. There are no uncertain
theorems.

One might wonder if it is possible for something to be both consistent and
complete, since this is what we usually think of when we think of math systems
- that they do not contradict nor is anything fuzzy. However, think of the state-
ment

This statement is not provable in this math field F.
Clearly, we can see that since this statement can’t both be proven/negated

without violating either consistency or completeness, respectively. This is called
Godel’s First Incompleteness Theorem and although the actual proof is
way more fleshed out and rigorous than my intuitive guide, it uses this as a sort
of guidance.

3.1 Example of Formal Proof

Now it’s time to show how formal proofs can get; that is even though something
we are proving seems so obvious just by our longtime exposure to math, let’s
assume that we only have a few axioms and are trying to prove said obvious
statement.

Consider the axiomatic system of an equivalence relation and equivalence
structures. An equivalence structure (A,RA) is a set A coupled with a binary
relation RA that satisfies the axioms of equivalence.

1. ∀x ∈ A xRAx (reflexive property)

2. ∀x, y ∈ A xRAy ⇐⇒ yRAx (symmetric property)

3. ∀x, y, z,∈ A (xRAy ∧ yRAz) =⇒ xRAz (transitive property)
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Let’s try to show now, that for an equivalence relation R (because the su-
perscript was annoying to type in LaTex)

(xRu ∧ yRu) =⇒ ∀z ∈ A (xRz ⇐⇒ yRz)

This seems obvious when we think about equality, but starting from only
those 3 base assumptions, it seems more annoying than originally thought. How-
ever, a rigorous proof makes no assumptions, so we have to continue.

1. uRy (symmetric property)

2. xRy (transitive property using xRu and uRy)

3. yRx (symmetric property on 2)

4. Now, prove the forward direction. Assume xRz

5. zRx (symmetric property)

6. Using zRx and xRy, we have zRy (transitive)

7. yRz (symmetric)

8. Now, prove backwards direction. Assume yRz. Everything from this point
should be a symmetric proof

9. xRz using xRy and yRz, and we have already finished here (actually the
forward proof should’ve been done this way, so manually edit that)

These types of proofs used to annoy me too, as they proved obvious things.
However, using this technique allows you to prove nonobvious things from ax-
ioms, so it is a good skill to have to piece together axioms and inferences. Try
working out other ”obvious” equalities using these 3 axioms - it’s a great rigor-
ous exercise and will help your proof skills!

4 Additional topics

So, I don’t claim to know all about this and this pretty much is all I have except
for some details. For more in-depth knowledge this is all along the fields of
mathematical logic (Math 125), abstract algebra (Math 113), and if you’re into
the Turing and Godel stuff, computation (CS 172).
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